We propose to estimate steady and turbulent wind velocities and aerodynamic coefficients of a fixed-wing Unmanned Aerial Vehicle (UAV) by using frequency separation as well as kinematic, aerodynamic and wind models combined in an Extended Kalman Filter (EKF). With these estimates it is possible to calculate the angle of attack and the magnitude of the airspeed. Avoiding the need for prior knowledge of UAV parameters, the proposed method utilizes only sensor information that is part of a standard sensor suite, which consists of a Global Navigation Satellite System (GNSS), an Inertial Measurement Unit (IMU) and a pitot-static tube, and attitude information obtained from these sensors. An observability analysis shows that attitude changes are necessary during the initialization phase and from time to time during the flight. Simulation results indicate that, with typical sensor accuracy, the estimates are close to the reference values of the aerodynamic coefficients and wind velocities and is capable of estimating the Angle of Attack with an Root Mean Square Error (RMSE) of 0.33°, the Sideslip Angle with an RMSE of 3.21° and the airspeed with an RMSE of 0.23 m/s.

Combining model-free and model-based angle of attack estimation for small fixed-wing UAVs using a standard sensor suite / Wenz, Andreas; Johansen Tor, Arne; Cristofaro, Andrea. - (2016), pp. 624-632. (Intervento presentato al convegno 2016 International Conference on Unmanned Aircraft Systems, ICUAS 2016 tenutosi a Arlington; United States) [10.1109/ICUAS.2016.7502583].

Combining model-free and model-based angle of attack estimation for small fixed-wing UAVs using a standard sensor suite

Cristofaro Andrea
2016

Abstract

We propose to estimate steady and turbulent wind velocities and aerodynamic coefficients of a fixed-wing Unmanned Aerial Vehicle (UAV) by using frequency separation as well as kinematic, aerodynamic and wind models combined in an Extended Kalman Filter (EKF). With these estimates it is possible to calculate the angle of attack and the magnitude of the airspeed. Avoiding the need for prior knowledge of UAV parameters, the proposed method utilizes only sensor information that is part of a standard sensor suite, which consists of a Global Navigation Satellite System (GNSS), an Inertial Measurement Unit (IMU) and a pitot-static tube, and attitude information obtained from these sensors. An observability analysis shows that attitude changes are necessary during the initialization phase and from time to time during the flight. Simulation results indicate that, with typical sensor accuracy, the estimates are close to the reference values of the aerodynamic coefficients and wind velocities and is capable of estimating the Angle of Attack with an Root Mean Square Error (RMSE) of 0.33°, the Sideslip Angle with an RMSE of 3.21° and the airspeed with an RMSE of 0.23 m/s.
2016
2016 International Conference on Unmanned Aircraft Systems, ICUAS 2016
Unmanned aerial vehicles (UAV); Aircraft; Dynamic soaring
04 Pubblicazione in atti di convegno::04b Atto di convegno in volume
Combining model-free and model-based angle of attack estimation for small fixed-wing UAVs using a standard sensor suite / Wenz, Andreas; Johansen Tor, Arne; Cristofaro, Andrea. - (2016), pp. 624-632. (Intervento presentato al convegno 2016 International Conference on Unmanned Aircraft Systems, ICUAS 2016 tenutosi a Arlington; United States) [10.1109/ICUAS.2016.7502583].
File allegati a questo prodotto
File Dimensione Formato  
Wenz_Combining-model-free_2016.pdf

solo gestori archivio

Tipologia: Versione editoriale (versione pubblicata con il layout dell'editore)
Licenza: Tutti i diritti riservati (All rights reserved)
Dimensione 366.85 kB
Formato Adobe PDF
366.85 kB Adobe PDF   Contatta l'autore

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11573/1329805
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 36
  • ???jsp.display-item.citation.isi??? 25
social impact